Extensions 1→N→G→Q→1 with N=C32×D12 and Q=C2

Direct product G=N×Q with N=C32×D12 and Q=C2
dρLabelID
C3×C6×D12144C3xC6xD12432,702

Semidirect products G=N:Q with N=C32×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×D12)⋊1C2 = C3×C322D8φ: C2/C1C2 ⊆ Out C32×D12484(C3^2xD12):1C2432,418
(C32×D12)⋊2C2 = C3×C3⋊D24φ: C2/C1C2 ⊆ Out C32×D12484(C3^2xD12):2C2432,419
(C32×D12)⋊3C2 = C336D8φ: C2/C1C2 ⊆ Out C32×D12144(C3^2xD12):3C2432,436
(C32×D12)⋊4C2 = C337D8φ: C2/C1C2 ⊆ Out C32×D1272(C3^2xD12):4C2432,437
(C32×D12)⋊5C2 = C32×D4⋊S3φ: C2/C1C2 ⊆ Out C32×D1272(C3^2xD12):5C2432,475
(C32×D12)⋊6C2 = C3×D125S3φ: C2/C1C2 ⊆ Out C32×D12484(C3^2xD12):6C2432,643
(C32×D12)⋊7C2 = C3×D12⋊S3φ: C2/C1C2 ⊆ Out C32×D12484(C3^2xD12):7C2432,644
(C32×D12)⋊8C2 = C3×S3×D12φ: C2/C1C2 ⊆ Out C32×D12484(C3^2xD12):8C2432,649
(C32×D12)⋊9C2 = C3×D6⋊D6φ: C2/C1C2 ⊆ Out C32×D12484(C3^2xD12):9C2432,650
(C32×D12)⋊10C2 = (C3×D12)⋊S3φ: C2/C1C2 ⊆ Out C32×D12144(C3^2xD12):10C2432,661
(C32×D12)⋊11C2 = D12⋊(C3⋊S3)φ: C2/C1C2 ⊆ Out C32×D1272(C3^2xD12):11C2432,662
(C32×D12)⋊12C2 = C3⋊S3×D12φ: C2/C1C2 ⊆ Out C32×D1272(C3^2xD12):12C2432,672
(C32×D12)⋊13C2 = C12⋊S32φ: C2/C1C2 ⊆ Out C32×D1272(C3^2xD12):13C2432,673
(C32×D12)⋊14C2 = S3×D4×C32φ: C2/C1C2 ⊆ Out C32×D1272(C3^2xD12):14C2432,704
(C32×D12)⋊15C2 = C32×Q83S3φ: C2/C1C2 ⊆ Out C32×D12144(C3^2xD12):15C2432,707
(C32×D12)⋊16C2 = C32×D24φ: C2/C1C2 ⊆ Out C32×D12144(C3^2xD12):16C2432,467
(C32×D12)⋊17C2 = C32×C4○D12φ: trivial image72(C3^2xD12):17C2432,703

Non-split extensions G=N.Q with N=C32×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×D12).1C2 = C3×Dic6⋊S3φ: C2/C1C2 ⊆ Out C32×D12484(C3^2xD12).1C2432,420
(C32×D12).2C2 = C3×D12.S3φ: C2/C1C2 ⊆ Out C32×D12484(C3^2xD12).2C2432,421
(C32×D12).3C2 = C3312SD16φ: C2/C1C2 ⊆ Out C32×D12144(C3^2xD12).3C2432,439
(C32×D12).4C2 = C3314SD16φ: C2/C1C2 ⊆ Out C32×D12144(C3^2xD12).4C2432,441
(C32×D12).5C2 = C32×Q82S3φ: C2/C1C2 ⊆ Out C32×D12144(C3^2xD12).5C2432,477
(C32×D12).6C2 = C32×C24⋊C2φ: C2/C1C2 ⊆ Out C32×D12144(C3^2xD12).6C2432,466

׿
×
𝔽